Preprint

A characterization of function $\boldsymbol{\pi}(\boldsymbol{x})$ in relation to twin primes

By
Marco Bortolamasi* ${ }^{*}$

Abstract

It's still a conjecture the Euclid's statement about the existence of infinitely many twin primes. It is not known if it is true but a strong evidence seems to justify the conjecture. In 2004 Arensdorf proposed a proof of the conjecture but unfortunately a serious error was found in the proof.

Conditions are known instead, in order to prove that a pair $(p-2, p)$ is a pair of twin primes.

In this study a specific property of the prime-counting function $\pi(x)$ is provided: we will prove that each pair of primes $(p, p+2)$ (independently if infinitely many or not) is such that the function $\pi(p)$ is equal to the summation of the difference of the fractional parts of the ratios of $p+2$ and $p+1$ to each prime lower than or equal to p.

The result lends itself well to processing further applications and insights.

Key words: twin primes, characterization, prime-counting function $\pi(x)$, twin prime conjecture.

[^0]
Preprint

Notation

In addition to the symbols commonly used:
$\left\lfloor\frac{x}{y}\right\rfloor=$ floor function of $\frac{x}{y}, y \neq 0$
$\mathrm{P}=$ set of primes
$\mathrm{I}^{\circ}(\mathrm{n})=\{\mathrm{i}:$ odd, with $3 \leq \mathrm{i} \leq \mathrm{n}\}$,
$\left\{\frac{x}{y}\right\}=$ fractional part function of $\frac{x}{y}, y \neq 0$

Introduction

Two primes are twin primes if their difference is 2 . Conditions are known in order to prove that a pair ($\mathrm{p}-2$, p) is a pair of twin primes.

In 1949 [4] P.A. Clement proved that integers $n, n+2$ are a pair of twin primes if and only if:

$$
4[(\mathrm{n}-1)!+1] \equiv-n \quad(\bmod n(\mathrm{n}+2))
$$

In 1963 [7] F. Pellegrino proved the following theorem, derived from Wilson's theorem [3] [10]:

Two natural numbers $p-2$ e p, with $p \geq 5$, are both primes if and only if:

$$
4\left[\frac{(p-3)!}{p-2}\right] \equiv-5 \quad(\bmod . p)
$$

In 2004 S.M. Ruiz [8] proved as a corollary of the main theorem concerning integers, that:
For odd $n>7$, the pair $(p, p+2)$ of integers are twin primes if and only if:

$$
\sum_{i o d d}^{j}\left(\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor+\left\lfloor\frac{p}{i}\right\rfloor-\left\lfloor\frac{p-1}{i}\right\rfloor\right)=2
$$

where the summation is over odd values of i through $j=\lfloor p / 3\rfloor$
The attempts over the past decades ${ }^{1}$, to solve the twin prime conjecture on the basis of these and many other approaches [2] [5] proved to be unsuccessful.

In 2004 Arensdorf [1] proposed a proof of the conjecture but a serious error was found in the proof (in particular Lemma 8 was found to be incorrect).
At the same time a strong numerical evidence ${ }^{2}$ seems to justify the conjecture.
In this paper is presented an interesting property of the prime-counting function $\pi(x)[\mathbf{1 0}]$ and its relation to twin primes.

[^1]
Preprint

A basic property of natural numbers

We recall the following property [3] [8] [9] seldom mentioned in standard texts, of which we provide a full demonstration:

Necessary and sufficient condition for:
(1) $\left\lfloor\frac{n}{i}\right\rfloor-\left\lfloor\frac{n-1}{i}\right\rfloor=0$
is that i does not divide $n \in N, n>0$ with $i \in N i \neq 1 i<n$
Proof
If i does not divide $\mathrm{n} \in \mathrm{N}$ then $\left\lfloor\frac{\mathrm{n}}{\mathrm{i}}\right\rfloor-\left\lfloor\frac{\mathrm{n}-1}{\mathrm{i}}\right\rfloor=0$ in fact:
$\mathrm{n}=\mathrm{k}_{1} \mathrm{i}+\mathrm{q}_{1} \quad$ with $\mathrm{i}>\mathrm{q}_{1}$
with $\mathrm{k}_{1}=\left\lfloor\frac{\mathrm{n}}{\mathrm{i}}\right\rfloor$ floor function of $\frac{\mathrm{n}}{\mathrm{i}}$ and $\mathrm{q}_{1}=$ reminder $\left(\mathrm{q}_{1}>0\right.$ by assumption)
since $\mathrm{q}_{1}>0$ then:
$\mathrm{n}-1=\mathrm{k}_{1} \mathrm{i}+\mathrm{q}_{2} \quad$ with $\mathrm{q}_{2}=$ reminder, $\mathrm{q}_{2} \geq 0$
hence $\mathrm{k}_{1}=\mathrm{k}_{2}$ i.e. $\left\lfloor\frac{\mathrm{n}}{\mathrm{i}}\right\rfloor=\left\lfloor\frac{\mathrm{n}-1}{\mathrm{i}}\right\rfloor$
At the same time:
If $\left\lfloor\frac{\mathrm{n}}{\mathrm{i}}\right\rfloor-\left\lfloor\frac{\mathrm{n}-1}{\mathrm{i}}\right\rfloor=0$ then i does not divide $\mathrm{n} \in \mathrm{N}$
in fact:
$\mathrm{n}-1=\left\lfloor\frac{\mathrm{n}-1}{\mathrm{i}}\right\rfloor \cdot \mathrm{i}+\mathrm{q}_{2} \quad$ with $\mathrm{q}_{2}=$ reminder, $\mathrm{q}_{2} \geq 0$
by assumption $\left\lfloor\frac{\mathrm{n}}{\mathrm{i}}\right\rfloor=\left\lfloor\frac{\mathrm{n}-1}{\mathrm{i}}\right\rfloor$
then:
$\mathrm{n}=\left\lfloor\frac{\mathrm{n}}{\mathrm{i}}\right\rfloor \cdot \mathrm{i}+\mathrm{q}_{1}$ with $\mathrm{q}_{1}>0$
Since $\mathrm{q}_{1}>0$ then i does not divide $\mathrm{n} \in \mathrm{N}$.
The statement (1) follows.

Preprint

Now we establish one theorem which will become useful in proving Theorem 2: it can be derived from the A / M corollary [8]. We provide an independent demonstration.

Theorem 1

Let $p \in P$ then $p+2 \in P$ if and only if:

$$
\text { (2) } \sum_{i}\left(\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor\right)=0 \quad \forall i \in I^{\circ}(p)
$$

Proof
First part:
We establish the equivalence of:
(2) $\sum_{i}\left(\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor\right)=0 \quad \forall i \in I^{\circ}(p)$

And
(3) $\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor=0 \quad \forall i \in I^{\circ}(p)$

In fact: if $\sum_{i}\left(\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor\right)=0 \quad \forall \in I^{\circ}(p)$
Then: $\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor=0 \quad \forall \in I^{\circ}(p)$
because each term of the summation is greater than or equal to zero.
And if: $\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor=0 \quad \forall \in I^{\circ}(p)$
Then: $\sum_{i}\left(\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor\right)=0 \quad \forall \in I^{\circ}(p)$

Second part:

We establish that:
If $p+2 \in \mathrm{P}$ then for all natural numbers $i: 1<\mathrm{i} \leq \mathrm{p}$:
(3) $\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor=0$

As proved (1) (by definition of prime number) any prime $p+2$ verifies (3) and consequently the statement (2).

At the same time:
If: $\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor=0 \quad \forall \mathrm{i} \in \mathrm{I}^{\circ}(\mathrm{p})$ then $\mathrm{p}+2 \in \mathrm{P}$
Because $p+2$ is not divisible by any odd number between 3 and p and at the same time it's not divisible by any even number since $p+2$ is odd.

Preprint

Theorem 2

Let p a prime such that $(p, p+2)$ is a pair of primes, then:

$$
\text { (4) } \pi(p)=\sum_{2}^{p}\left(\left\{\frac{p+2}{\bar{p}_{i}}\right\}-\left\{\frac{p+1}{\bar{p}_{i}}\right\}\right) \quad \text { for each prime } \bar{p}_{i} \leq p \in P
$$

First part:
We establish that eq. (3) leads to:

$$
\text { (5) }\left\{\frac{\mathrm{p}+2}{\mathrm{i}}\right\}-\left\{\frac{\mathrm{p}+1}{\mathrm{i}}\right\}=1 \quad \forall \mathrm{i} \in \mathrm{I}^{\circ}(\mathrm{p})
$$

Proof of the first part

Let $p \in \mathrm{P}$ and consider the necessary and sufficient condition for having $p, p+2 \in \mathrm{P}(3)$:
(3) $\left\lfloor\frac{\mathrm{p}+2}{\mathrm{i}}\right\rfloor-\left\lfloor\frac{\mathrm{p}+1}{\mathrm{i}}\right\rfloor=0 \quad \forall \mathrm{i} \in \mathrm{I}^{\circ}(\mathrm{p})$

We observe that:
$\mathrm{p}+2=\mathrm{k}_{1} \mathrm{i}+\mathrm{q}_{1} \quad$ with $\mathrm{i}>\mathrm{q}_{1}>0$
$\mathrm{p}+1=\mathrm{k}_{2} \mathrm{i}+\mathrm{q}_{2} \quad$ with $\mathrm{i}>\mathrm{q}_{2} \geq 0$
It is necessary and sufficient condition for having $p+2 \in \mathrm{P}$, to have $\mathrm{k}_{1}=\mathrm{k}_{2}$ (3).
It follows that:
$\mathrm{q}_{2}-\mathrm{q}_{1}=1$ i.e. for any $p \in \mathrm{P}$ such that $p+2 \in \mathrm{P}$, holds:
(5) $\left\{\frac{p+2}{i}\right\}-\left\{\frac{p+1}{i}\right\}=1$

We have established that for $p \in P$ then $p+2 \in P$ if and only if the difference of fractional parts (5) calculated for any odd number between 3 and n, is equal to 1 .

Second part:

Eq. (3) and eq. (5), can be restricted to the primes $\overline{\mathrm{p}} \in \mathrm{I}^{\circ}(\mathrm{p})$, i.e. to the primes between 3 and p.

Proof of the second part

If $\left\lfloor\frac{p+2}{i}\right\rfloor-\left\lfloor\frac{p+1}{i}\right\rfloor=0 \quad \forall i \in I^{\circ}(p)$ i.e.for each odd $i \in I^{\circ}(p)$
Obviously the same holds for each prime $\bar{p} \in I^{\circ}(p)$:
$\left\lfloor\frac{\mathrm{p}+2}{\overline{\mathrm{p}}}\right\rfloor-\left\lfloor\frac{\mathrm{p}+1}{\overline{\mathrm{p}}}\right\rfloor=0$
At the same time:
Let $\bar{p} \in I^{\circ}(p)$, if:
(6) $\left\lfloor\frac{\mathrm{p}+2}{\overline{\mathrm{p}}}\right\rfloor-\left\lfloor\frac{\mathrm{p}+1}{\overline{\mathrm{p}}}\right\rfloor=0$

Preprint

Each of his multiple $\bar{p} n$ lower than (or equal ${ }^{3}$) to p verifies the same condition:
(7) $\left\lfloor\frac{p+2}{\bar{p} n}\right\rfloor-\left\lfloor\frac{p+1}{\bar{p} n}\right\rfloor=0 \quad$ with $\bar{p} \cdot n<p$

In fact:
$\overline{\mathrm{k}}_{1}=\frac{\mathrm{p}+2-\overline{\mathrm{q}}_{1}}{\mathrm{n} \cdot \overline{\mathrm{p}}} \quad$ and $\quad \overline{\mathrm{k}}_{2}=\frac{\mathrm{p}+1-\overline{\mathrm{q}}_{2}}{\mathrm{n} \cdot \overline{\mathrm{p}}}$
$\overline{\mathrm{k}}_{1}=\frac{\mathrm{k}_{1} \cdot \overline{\mathrm{p}}+\mathrm{q}_{1-} \overline{\mathrm{q}}_{1}}{\mathrm{n} \cdot \overline{\mathrm{p}}} \quad$ and $\quad \overline{\mathrm{k}}_{2}=\frac{\mathrm{k}_{2} \cdot \overline{\mathrm{p}}+\mathrm{q}_{2-} \overline{\mathrm{q}}_{2}}{\mathrm{n} \cdot \overline{\mathrm{p}}}$
Hence:
$\overline{\mathrm{k}}_{1}=\frac{\mathrm{k}_{1} \cdot \overline{\mathrm{p}}}{\mathrm{n} \cdot \overline{\mathrm{p}}}+\frac{\mathrm{q}_{1}-\overline{\mathrm{q}}_{1}}{\mathrm{n} \cdot \overline{\mathrm{p}}} \quad$ e $\quad \overline{\mathrm{k}}_{2}=\frac{\mathrm{k}_{2} \cdot \overline{\mathrm{p}}}{\mathrm{n} \cdot \overline{\mathrm{p}}}+\frac{\mathrm{q}_{2-} \overline{\mathrm{q}}_{2}}{\mathrm{n} \cdot \overline{\mathrm{p}}}$
But $\mathrm{k}_{1}=\mathrm{k}_{2}$ (by assumption (6))
hence $\mathrm{q}_{1-} \overline{\mathrm{q}}_{1}=\mathrm{q}_{2-} \overline{\mathrm{q}}_{2}$
and since $\mathrm{q}_{1}-\mathrm{q}_{2}=1$ from eq. (5) it follows that: $\bar{q}_{1}-\bar{q}_{2}=1$
Hence, if $\mathrm{k}_{1}=\mathrm{k}_{2}$ then $\overline{\mathrm{k}}_{1}=\overline{\mathrm{k}}_{2}$.
Hence:
if each number $i \in I^{\circ}(p)$ verifies eq. (7), the same condition (6) obviously holds for each $\bar{p} \in I^{\circ}(p)$ and vice versa:
if \bar{p} verifies eq. (6), the same condition (7) holds for each composite number $\bar{p} \cdot n \in \mathrm{I}^{\circ}(\mathrm{p})$ and since:
$\left\{\bar{p} \in \mathrm{I}^{\circ}(\mathrm{p})\right\} \mathrm{U}\left\{\bar{p} \cdot n \in \mathrm{I}^{\circ}(\mathrm{p})\right\} \supset \mathrm{I}^{\circ}(\mathrm{p})$
We have established that for $\mathrm{p} \in \mathrm{P}$, necessary and sufficient condition for $p+2 \in \mathrm{P}$ is:

$$
\text { (8) }\left\{\frac{p+2}{\bar{p}}\right\}-\left\{\frac{p+1}{\bar{p}}\right\}=1 \text { for each prime } 3 \leq \bar{p} \leq p
$$

Third Part:

The case with $\overline{\mathrm{p}}_{\mathrm{i}}=2$ is the same of each prime $\bar{p}: 3 \leq \bar{p} \leq p$.

Proof of the third part

Since number 2 doesn't divide $p+2$ (odd number) we have (1):
$\left\lfloor\frac{\mathrm{p}+2}{2}\right\rfloor-\left\lfloor\frac{\mathrm{p}+1}{2}\right\rfloor=0$
And the same procedure used in the first part for eq. (3) to eq. (5) leads to:

$$
\text { (8b) }\left\{\frac{p+2}{2}\right\}-\left\{\frac{p+1}{2}\right\}=1
$$

[^2]
Preprint

Findings of Theorem 2:

We have established that for $p \in \mathrm{P}$ such that $\mathrm{p}+2 \in \mathrm{P}$ the difference of the fractional parts (8) (8b) calculated for each prime \bar{p}_{i} lower than or equal to p, is always equal to 1 .

It follows that the summation (4) of the fractional parts 'counts' exactly the number of primes lower than or equal to a given prime $\mathrm{p} \in P$ such that $p+2 \in \mathrm{P}$.

In other words Theorem 2 establishes that the number of primes lower than or equal to a given prime p such that $p+2 \in \mathrm{P}$ is the summation (4) of the difference of the fractional parts of the ratios of $p+2 \in P$ $e p+1$ to each prime lower than or equal to p.

An equivalent way of expressing the statement of Theorem 2:
The statement (4) of Theorem 2 can also be expressed as follows:

Let p a prime such that $(p, p+2)$ is a pair of primes, then:

$$
\pi(p)=\sum_{2}^{p}\left(a_{i}-b_{i}\right)
$$

With a_{i} and b_{i} such that:

$$
a_{i}=\left\{\frac{p+2}{\bar{p}_{i}}\right\} \text { and } b_{i}=\left\{\frac{p+1}{\bar{p}_{i}}\right\} \text { for each prime } \bar{p}_{i} \leq p \in P
$$

Preprint

Example

For $p=29$ the pair of twin primes is $(29,31)$
Difference of fractional parts

1	0
2	$1(8 \mathrm{~b})$
3	$1(8)$
5	$1(8)$
7	$1(8)$
9	1
11	$1(8)$
13	$1(8)$
15	$1(8)$
17	$1(8)$
19	1
21	$1(8)$
23	1
25	1
27	$1(8)$
29	

It's evident that counting the primes lower than or equal to $p=29$ is counting the fractional parts according to $(8 b)$ and $(8)^{4}$.

References

[1] Arenstorf, R.F. 2004 - There are infinitely many Prime Twins Preprint http://arXiv.org/abs/math.NT/0405509
[2] Bortolamasi M., 2018 - I numeri primi gemelli storia e congetture. Publication pending
[3] Burton D.M., 2007 - Elementary Number theory. $6^{\text {th }}$ Edition, University of Hampshire, Mc Graw-Hill.
[4] Clement p.a., 1949 - Congruences for set of primes. The American Mathematical Monthly, Vol.56, No. 1 pp. 2325
[5] Languasco A., Zaccagnini A., 2005 - Intervalli fra numeri primi consecutivi. Università Bocconi, Milano.www.math.unipd.it/~languasc/lavoripdf/R22.pdf
[6] Miller G., 1976 - Riemann's Hypothesis and Tests for Primality. In: J. Comput. System Sci., 13(3), pp. 300-317.
[7] Pellegrino F., 1963 - Teorema di Wilson et numeri primi gemelli. Rend. Acc. Naz. dei Lincei (8), 35, 258-262. MR 29\#2213
[8] RUIZ S.M.,ARIFF A. $2014-$ A Basic Characteristic of twin primes and its generalization. www.researchgate.net.
[9] Trygve Nagell. Introduction to the Number Theory second edition. Chelsea Publishing, New York 1981
[10] ZACCAGNINI A., 2015 -Introduzione alla teoria analitica dei numeri. Università di Parma.
http://people.dmi.unipr.it/alessandro.zaccagnini/psfiles/lezioni/tdn2015.pdf

[^3]
Preprint

Acknowledgment

The author is grateful to prof. Franca Cattelani of the University of Modena and Reggio Emilia for useful comments and recommendations.

[^0]: * Order of Engineers of the province of Modena id \# 2680, c/o Department of Engineering E. Ferrari, University of Modena and Reggio Emilia, P. Vivarelli 10, 41125 Modena; e-mail: bortolamasim@libero.it.

[^1]: ${ }^{1}$ e.g. the primality tests [3], the Sieve methods [10], the Rabin-Miller [6] probabilistic algorithm for testing primality etc.
 ${ }^{2}$ Two distributed computing project, Twin Prime Search (TPS) and Prime Grid search for large twin primes and have produced many record-largest twin primes

[^2]: ${ }^{3}$ Of course it doesn't exist any prime $\bar{p} \cdot n=p$ with $\bar{p}, p \in P$

[^3]: ${ }^{4}$ At the same time we observe that every composite number (e.g. $\mathrm{n}=9$) verifies the same condition (8) (in this case of $\mathrm{n}=3$)

