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Abstract 

It’s still a conjecture the Euclid’s statement about the existence of infinitely many twin primes. It is not known if it is 

true but a strong evidence seems to justify the conjecture.  In 2004 Arensdorf proposed a proof of the conjecture but 

unfortunately a serious error was found in the proof.  

Conditions are known instead, in order to prove that a pair (p-2, p) is a pair of twin primes. 

In this study a specific property of the prime-counting function 𝜋(𝑥) is provided: we will prove that each pair of primes 

(p, p+2) (independently if infinitely many or not) is such that the function  𝜋(𝑝) is equal to the summation of the 

difference of the fractional parts of the ratios of p+2 and p+1 to each prime lower than or equal to 𝑝.  

The result lends itself  well to processing  further applications and insights. 
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Notation 

In addition to the symbols commonly used: 

 =  floor function of    , y≠0  

P = set of primes 

I°(n) = {i ∶    odd, with 3 ≤  i ≤ n},  

 = fractional part function of   , y≠0 

 

Introduction 

Two primes are twin primes if their difference is 2. Conditions are known in order to prove that a pair (p-2, 

p) is a pair of twin primes. 

In 1949 [4] P.A. Clement proved that  integers n, n+2 are a pair of twin primes if and only if: 
 

4 [(n− 1)! + 1]≡ −n    (mod n(n+2)) 

In 1963 [7]  F. Pellegrino proved the following theorem, derived from Wilson’s theorem [3] [10]: 
 
Two natural numbers p-2 e p, with  p ≥ 5, are both primes if and only if: 
 

4
(𝑝 − 3)!

𝑝 − 2
≡ −5     (𝑚𝑜𝑑. 𝑝) 

In 2004 S.M. Ruiz [8] proved as a corollary of the main theorem concerning integers, that:  
 

For odd n > 7, the pair (p, p+2) of integers are twin primes if and only if:  

∑ − + − = 2          

where the summation is over odd values of 𝑖 through  𝑗 = ⌊𝑝/3⌋ 

The attempts over the past decades1, to solve the twin prime conjecture on the basis of these and many other 
approaches [2] [5] proved to be unsuccessful.   

In 2004 Arensdorf [1] proposed a proof of the conjecture but a serious error was found in the proof (in 
particular Lemma 8 was found to be incorrect). 

At the same time a strong numerical evidence2 seems to justify the conjecture.  

In this paper is presented an interesting property of the prime-counting function π(x) [10] and its relation to 

twin primes. 

                                                             
1 e.g.  the primality tests [3], the Sieve methods [10], the Rabin-Miller [6] probabilistic algorithm for testing primality etc. 
2 Two distributed computing project, Twin Prime Search (TPS) and Prime Grid search for large twin primes and have produced 
many record-largest twin primes 
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A basic property of natural numbers 

We recall the following property [3] [8] [9] seldom mentioned in standard texts, of which we provide a full 
demonstration: 

Necessary and sufficient condition for: 

(1) − = 0 

is that i does not divide n ∈ 𝑁, n > 0  with i ∈ 𝑁  𝑖 ≠ 1  𝑖 < 𝑛 

Proof 

If  i does not divide n ∈ N then − = 0  in fact: 

n = k  i + q     with i > q                           

with k  =   floor function of      and  q = reminder  (q > 0 by assumption) 

since q > 0 then:  

n − 1 = k  i + q      with q = reminder,  q  ≥ 0 

hence k  = k   i.e. =  

At the same time: 

If − = 0 then i  does not divide n ∈ N  

in fact: 

n − 1 =  ∙ i + q      with q = reminder, q  ≥ 0 

by assumption  =    

then: 

n =   ∙ i + q   with  q  > 0   

Since  q  > 0  then  i  does not divide n ∈ N. 

The statement (1) follows. ▄ 
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Now we establish one theorem which will become useful in proving Theorem 2: it can be derived from the 
A/M corollary [8].  We provide an independent demonstration. 

Theorem 1 

Let p ∈ 𝑃 then  p+2 ∈ 𝑃 if and only if: 

(2) ∑ − = 0  ∀ i ∈ 𝐼°(𝑝) 

Proof 

First part:  

We establish the equivalence of: 

(2) ∑ − = 0  ∀ i ∈ 𝐼°(𝑝)      

And 

(3) − = 0  ∀ i ∈ 𝐼°(𝑝)        

In fact:  if  ∑ − = 0  ∀ ∈ 𝐼°(𝑝)   

Then:  − = 0  ∀ ∈ 𝐼°(𝑝) 

because each term of the summation is greater than or equal to zero.  

And if: − = 0  ∀ ∈ 𝐼°(𝑝)  

Then:  ∑ − = 0   ∀ ∈ 𝐼°(𝑝) 

Second part: 

We establish that: 

If  p+2  ∈  P then for all natural numbers i:   1 < i ≤ p : 

(3)   − = 0 

As proved (1) (by definition of prime number) any prime p+2 verifies (3) and consequently the statement 
(2).  

At the same time: 

If:   − = 0   ∀ i ∈ I°(p)  then   p+2  ∈ P 

Because p+2 is not divisible by any odd number between 3 and p and at the same time it’s not divisible by 
any even number since p+2 is odd.  ▄ 
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Theorem 2 

Let p a prime such that (p, p+2) is a pair of primes, then: 

(4) 𝜋(𝑝) = ∑
̅

−
̅

      for each prime  �̅� ≤  𝑝 ∈ 𝑃 

First part:  

We establish that eq. (3) leads to:  

(5) −   = 1    ∀ i ∈ I°(p)      

Proof of the first part 

Let p ∈ P and consider the necessary and sufficient condition for having p, p+2 ∈ P (3): 

(3) − = 0   ∀ i ∈ I°(p)  

We observe that:  

p+2=k  i + q     with i > q  > 0                       

p+1=k  i + q     with i > q   ≥0   

It is necessary and sufficient condition for having p+2 ∈ P , to have  k = k   (3). 

It follows that:    

q   –  q   = 1  i.e.  for any 𝑝 ∈ P such that  p+2 ∈ P, holds: 

(5) −  =  1 

We have established that for p   ∈  P then p+2 ∈ P if and only if the difference of fractional parts (5) 
calculated  for any odd number between 3 and n, is equal to 1. 

Second part: 

Eq. (3) and eq. (5), can be restricted to the primes p ∈ I°(p), i.e. to the primes between 3 and p. 

Proof of the second  part 

If  − = 0   ∀ i ∈ I°(p)   𝑖. 𝑒. for each odd  i ∈ I°(p)   

Obviously the same holds for each prime  p ∈ I°(p): 

− = 0   

At the same time: 

Let p ∈ I°(p), if: 

(6) − = 0     
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Each of his multiple �̅� 𝑛 lower than (or equal3) to p verifies the same condition: 

(7)
𝑝 + 2

�̅� 𝑛
−

𝑝 + 1

�̅� 𝑛
= 0     𝑤𝑖𝑡ℎ �̅� ∙ 𝑛 < 𝑝  

In fact:  

k =
∙

   and    k =
∙

 

k =
 ∙    

∙
   and     k =

 ∙    

∙
 

Hence: 

k =
 ∙  

∙
+   

∙
   e     k =

 ∙  

∙
+   

∙
 

But k = k    (by assumption (6))  

hence   q  q =  q  q  

and since q − q =  1  from eq. (5) it follows that:   q − q  = 1  

Hence, if  k = k  then  k =  k . 

Hence: 

if each number  𝑖 ∈ I°(p) verifies eq. (7), the same condition (6) obviously holds for each  �̅�  ∈ I°(p) 

and vice versa: 

if  �̅�  verifies eq. (6), the same condition (7) holds for each composite number  �̅�  ∙ 𝑛 ∈ I°(p) and since: 

{�̅�  ∈  I°(p)}  U  {�̅�  ∙ 𝑛 ∈  I°(p)}  ⊃   I°(p) 

We have established that for p ∈ P, necessary and sufficient condition for  p+2 ∈ P is: 

(8) 
̅

−
̅

 = 1   for each prime  3 ≤ 𝑝  ≤  𝑝   

Third Part: 

The case with  p = 2  is the same of each prime 𝑝  : 3 ≤ 𝑝  ≤  𝑝. 

Proof of the third  part 

Since number 2 doesn’t divide p+2 (odd number) we have (1): 

−   = 0 

And the same procedure used in the first part for eq. (3) to eq. (5) leads to:   

(8b)
p + 2

2
−

p + 1

2
= 1 

 

                                                             
3 Of course it doesn’t exist any prime �̅� ∙ 𝑛 =  𝑝  with �̅� , 𝑝 ∈ 𝑃 
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Findings of Theorem 2: 

We have established that for 𝑝 ∈ P such that p+2 ∈ P the difference of the fractional parts (8) (8b) 

calculated for each prime 𝑝   lower than or equal to p, is always equal to 1.  

It follows that the summation (4) of the fractional parts ‘counts’ exactly the number of primes lower than 

or equal to a given prime p ∈ 𝑃  such that p+2 ∈ P. 

In other words Theorem 2 establishes that the number of primes lower than or equal to a given prime p 

such that p+2 ∈ P is the summation (4) of the difference  of the fractional parts of  the ratios of p+2 ∈ 𝑃 

e p+1 to each prime lower than or equal to p. ▄ 

 

An equivalent way of expressing the statement of Theorem 2: 

The statement (4) of Theorem 2 can also be expressed as follows: 

Let p a prime such that (p, p+2) is a pair of primes, then: 

𝜋(𝑝) = ∑ (𝑎 − 𝑏 ) 

With 𝑎  and 𝑏  such that: 

  𝑎 =
̅

   and  𝑏 = 
̅

    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑟𝑖𝑚𝑒 �̅� ≤  𝑝 ∈ 𝑃      
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Example 

For p=29 the pair of twin primes is (29, 31) 

Difference of  fractional parts  
1 0 
2 1 (8b) 
3 1  (8) 
5 1  (8) 
7 1  (8) 
9 1  

11 1  (8) 
13 1  (8) 
15 1   
17 1  (8) 
19 1  (8) 
21 1  
23 1  (8) 
25 1  
27 1  
29 1  (8) 

 

It’s evident that counting the primes lower than or equal to p = 29 is counting the fractional parts 

according to (8b) and (8)4.  
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4 At the same time we observe that every composite number (e.g. n= 9) verifies the same condition (8) (in this case of n=3) 
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